PROLOGUE
Beginnings, it’s said, are apt to be shadowy. So it is with this story, which starts with the emergence of a new species maybe two hundred thousand years ago. The species does not yet have a name—nothing does—but it has the capacity to name things.
As with any young species, this one’s position is precarious. Its numbers are small, and its range restricted to a slice of eastern Africa. Slowly its population grows, but quite possibly then it contracts again—some would claim nearly fatally—to just a few thousand pairs.
The members of the species are not particularly swift or strong or fertile. They are, however, singularly resourceful. Gradually they push into regions with different climates, different predators, and different prey. None of the usual constraints of habitat or geography seem to check them. They cross rivers, plateaus, mountain ranges. In coastal regions, they gather shellfish; farther inland, they hunt mammals. Everywhere they settle, they adapt and innovate. On reaching Europe, they encounter creatures very much like themselves, but stockier and probably brawnier, who have been living on the continent far longer. They interbreed with these creatures and then, by one means or another, kill them off.
The end of this affair will turn out to be exemplary. As the species expands its range, it crosses paths with animals twice, ten, and even twenty times its size: huge cats, towering bears, turtles as big as elephants, sloths that stand fifteen feet tall. These species are more powerful and often fiercer. But they are slow to breed and are wiped out.
Although a land animal, our species—ever inventive—crosses the sea. It reaches islands inhabited by evolution’s outliers: birds that lay foot-long eggs, pig-sized hippos, giant skinks. Accustomed to isolation, these creatures are ill-equipped to deal with the newcomers or their fellow travelers (mostly rats). Many of them, too, succumb.
The process continues, in fits and starts, for thousands of years, until the species, no longer so new, has spread to practically every corner of the globe. At this point, several things happen more or less at once that allow Homo sapiens, as it has come to call itself, to reproduce at an unprecedented rate. In a single century the population doubles; then it doubles again, and then again. Vast forests are razed. Humans do this deliberately, in order to feed themselves. Less deliberately, they shift organisms from one continent to another, reassembling the biosphere.
Meanwhile, an even stranger and more radical transformation is under way. Having discovered subterranean reserves of energy, humans begin to change the composition of the atmosphere. This, in turn, alters the climate and the chemistry of the oceans. Some plants and animals adjust by moving. They climb mountains and migrate toward the poles. But a great many—at first hundreds, then thousands, and finally perhaps millions—find themselves marooned. Extinction rates soar, and the texture of life changes.
No creature has ever altered life on the planet in this way before, and yet other, comparable events have occurred. Very, very occasionally in the distant past, the planet has undergone change so wrenching that the diversity of life has plummeted. Five of these ancient events were catastrophic enough that they’re put in their own category: the so-called Big Five. In what seems like a fantastic coincidence, but is probably no coincidence at all, the history of these events is recovered just as people come to realize that they are causing another one. When it is still too early to say whether it will reach the proportions of the Big Five, it becomes known as the Sixth Extinction.
The story of the Sixth Extinction, at least as I’ve chosen to tell it, comes in thirteen chapters. Each tracks a species that’s in some way emblematic—the American mastodon, the great auk, an ammonite that disappeared at the end of the Cretaceous alongside the dinosaurs. The creatures in the early chapters are already gone, and this part of the book is mostly concerned with the great extinctions of the past and the twisting history of their discovery, starting with the work of the French naturalist Georges Cuvier. The second part of the book takes place very much in the present—in the increasingly fragmented Amazon rainforest, on a fast-warming slope in the Andes, on the outer reaches of the Great Barrier Reef. I chose to go to these particular places for the usual journalistic reasons—because there was a research station there or because someone invited me to tag along on an expedition. Such is the scope of the changes now taking place that I could have gone pretty much anywhere and, with the proper guidance, found signs of them. One chapter concerns a die-off happening more or less in my own backyard (and, quite possibly, in yours).
If extinction is a morbid topic, mass extinction is, well, massively so. It’s also a fascinating one. In the pages that follow, I try to convey both sides: the excitement of what’s being learned as well as the horror of it. My hope is that readers of this book will come away with an appreciation of the truly extraordinary moment in which we live.
CHAPTER ITHE SIXTH EXTINCTION
Atelopus zeteki
The town of El Valle de Antón, in central Panama, sits in the middle of a volcanic crater formed about a million years ago. The crater is almost four miles wide, but when the weather is clear you can see the jagged hills that surround the town like the walls of a ruined tower. El Valle has one main street, a police station, and an open-air market. In addition to the usual assortment of Panama hats and vividly colored embroidery, the market offers what must be the world’s largest selection of golden-frog figurines. There are golden frogs resting on leaves and golden frogs sitting up on their haunches and—rather more difficult to understand—golden frogs clasping cell phones. There are golden frogs wearing frilly skirts and golden frogs striking dance poses and golden frogs smoking cigarettes through a holder, after the fashion of FDR. The golden frog, which is taxicab yellow with dark brown splotches, is endemic to the area around El Valle. It is considered a lucky symbol in Panama; its image is (or at least used to be) printed on lottery tickets.
As recently as a decade ago, golden frogs were easy to spot in the hills around El Valle. The frogs are toxic—it’s been calculated that the poison contained in the skin of just one animal could kill a thousand average-sized mice—hence the vivid color, which makes them stand out against the forest floor. One creek not far from El Valle was nicknamed Thousand Frog Stream. A person walking along it would see so many golden frogs sunning themselves on the banks that, as one herpetologist who made the trip many times put it to me, “it was insane—absolutely insane.”
Then the frogs around El Valle started to disappear. The problem—it was not yet perceived as a crisis—was first noticed to the west, near Panama’s border with Costa Rica. An American graduate student happened to be studying frogs in the rainforest there. She went back to the States for a while to write her dissertation, and when she returned, she couldn’t find any frogs or, for that matter, amphibians of any kind. She had no idea what was going on, but since she needed frogs for her research, she set up a new study site, farther east. At first the frogs at the new site seemed healthy; then the same thing happened: the amphibians vanished. The blight spread through the rainforest until, in 2002, the frogs in the hills and streams around the town of Santa Fe, about fifty miles west of El Valle, were effectively wiped out. In 2004, little corpses began showing up even closer to El Valle, around the town of El Copé. By this point, a group of biologists, some from Panama, others from the United States, had concluded that the golden frog was in grave danger. They decided to try to preserve a remnant population by removing a few dozen of each sex from the forest and raising them indoors. But whatever was killing the frogs was moving even faster than the biologists had feared. Before they could act on their plan, the wave hit.
* * *
I first read about the frogs of El Valle in a nature magazine for children that I picked up from my kids. The article, which was illustrated with full-color photos of the Panamanian golden frog and other brilliantly colored species, told the story of the spreading scourge and the biologists’ efforts to get out in front of it. The biologists had hoped to have a new lab facility constructed in El Valle, but it was not ready in time. They raced to save as many animals as possible, even though they had nowhere to keep them. So what did they end up doing? They put them “in a frog hotel, of course!” The “incredible frog hotel”—really a local bed and breakfast—agreed to let the frogs stay (in their tanks) in a block of rented rooms.
“With biologists at their beck and call, the frogs enjoyed first-class accommodations that included maid and room service,” the article noted. The frogs were also served delicious, fresh meals—“so fresh, in fact, the food could hop right off the plate.”
Just a few weeks after I read about the “incredible frog hotel,” I ran across another frog-related article written in a rather different key. This one, which appeared in the Proceedings of the National Academy of Sciences, was by a pair of herpetologists. It was titled “Are We in the Midst of the Sixth Mass Extinction? A View from the World of Amphibians.” The authors, David Wake, of the University of California-Berkeley, and Vance Vredenburg, of San Francisco State, noted that there “have been five great mass extinctions during the history of life on this planet.” These extinctions they described as events that led to “a profound loss of biodiversity.” The first took place during the late Ordovician period, some 450 million years ago, when living things were still mainly confined to the water. The most devastating took place at the end of the Permian period, some 250 million years ago, and it came perilously close to emptying the earth out altogether. (This event is sometimes referred to as “the mother of mass extinctions” or “the great dying.”) The most recent—and famous—mass extinction came at the close of the Cretaceous period; it wiped out, in addition to the dinosaurs, the plesiosaurs, the mosasaurs, the ammonites, and the pterosaurs. Wake and Vredenburg argued that, based on extinction rates among amphibians, an event of a similarly catastrophic nature was currently under way. Their article was illustrated with just one photograph, of about a dozen mountain yellow-legged frogs—all dead—lying bloated and belly-up on some rocks.
I understood why a kids’ magazine had opted to publish photos of live frogs rather than dead ones. I also understood the impulse to play up the Beatrix Potter–like charms of amphibians ordering room service. Still, it seemed to me, as a journalist, that the magazine had buried the lede. Any event that has occurred just five times since the first animal with a backbone appeared, some five hundred million years ago, must qualify as exceedingly rare. The notion that a sixth such event would be taking place right now, more or less in front of our eyes, struck me as, to use the technical term, mind-boggling. Surely this story, too—the bigger, darker, far more consequential one—deserved telling. If Wake and Vredenburg were correct, then those of us alive today not only are witnessing one of the rarest events in life’s history, we are also causing it. “One weedy species,” the pair observed, “has unwittingly achieved the ability to directly affect its own fate and that of most of the other species on this planet.” A few days after I read Wake and Vredenburg’s article, I booked a ticket to Panama.
* * *
THE El Valle Amphibian Conservation Center, or EVACC (pronounced “ee-vac”), lies along a dirt road not far from the open-air market where the golden frog figurines are sold. It’s about the size of a suburban ranch house, and it occupies the back corner of a small, sleepy zoo, just beyond a cage of very sleepy sloths. The entire building is filled with tanks. There are tanks lined up against the walls and more tanks stacked at the center of the room, like books on the shelves of a library. The taller tanks are occupied by species like the lemur tree frog, which lives in the forest canopy; the shorter tanks serve for species like the big-headed robber frog, which lives on the forest floor. Tanks of horned marsupial frogs, which carry their eggs in a pouch, sit next to tanks of casque-headed frogs, which carry their eggs on their backs. A few dozen tanks are devoted to Panamanian golden frogs, Atelopus zeteki.
Golden frogs have a distinctive, ambling gait that makes them look a bit like drunks trying to walk a straight line. They have long, skinny limbs, pointy yellow snouts, and very dark eyes, through which they seem to be regarding the world warily. At the risk of sounding weak-minded, I will say that they look intelligent. In the wild, females lay their eggs in shallow running water; males, meanwhile, defend their territory from the tops of mossy rocks. In EVACC, each golden frog tank has its own running water, provided by its own little hose, so that the animals can breed near a simulacrum of the streams that were once their home. In one of the ersatz streams, I noticed a string of little pearl-like eggs. On a white board nearby someone had noted excitedly that one of the frogs “depositó huevos!!”
EVACC sits more or less in the middle of the golden frog’s range, but it is, by design, entirely cut off from the outside world. Nothing comes into the building that has not been thoroughly disinfected, including the frogs, which, in order to gain entry, must first be treated with a solution of bleach. Human visitors are required to wear special shoes and to leave behind any bags or knapsacks or equipment that they’ve used out in the field. All of the water that enters the tanks has been filtered and specially treated. The sealed-off nature of the place gives it the feel of a submarine or, perhaps more aptly, an ark mid-deluge.
A Panamanian golden frog (Atelopus zeteki).
EVACC’s director is a Panamanian named Edgardo Griffith. Griffith is tall and broad-shouldered, with a round face and a wide smile. He wears a silver ring in each ear and has a large tattoo of a toad’s skeleton on his left shin. Now in his mid-thirties, Griffith has devoted pretty much his entire adult life to the amphibians of El Valle, and he has turned his wife, an American who came to Panama as a Peace Corps volunteer, into a frog person, too. Griffith was the first person to notice when little carcasses started showing up in the area, and he personally collected many of the several hundred amphibians that got booked into the hotel. (The animals were transferred to EVACC once the building had been completed.) If EVACC is a sort of ark, Griffith becomes its Noah, though one on extended duty, since already he’s been at things a good deal longer than forty days. Griffith told me that a key part of his job was getting to know the frogs as individuals. “Every one of them has the same value to me as an elephant,” he said.
The first time I visited EVACC, Griffith pointed out to me the representatives of species that are now extinct in the wild. These included, in addition to the Panamanian golden frog, the Rabbs’ fringe-limbed tree frog, which was first identified only in 2005. At the time of my visit, EVACC was down to just one Rabbs’ frog, so the possibility of saving even a single, Noachian pair had obviously passed. The frog, greenish brown with yellow speckles, was about four inches long, with oversized feet that gave it the look of a gawky teenager. Rabbs’ fringe-limbed tree frogs lived in the forest above El Valle, and they laid their eggs in tree holes. In an unusual, perhaps even unique arrangement, the male frogs cared for the tadpoles by allowing their young, quite literally, to eat the skin off their backs. Griffith said that he thought there were probably many other amphibian species that had been missed in the initial collecting rush for EVACC and had since vanished; it was hard to say how many, since most of them were probably unknown to science. “Unfortunately,” he told me, “we are losing all these amphibians before we even know that they exist.”
“Even the regular people in El Valle, they notice it,” he said. “They tell me, ‘What happened to the frogs? We don’t hear them calling anymore.’”
* * *
WHEN the first reports that frog populations were crashing began to circulate, a few decades ago, some of the most knowledgeable people in the field were the most skeptical. Amphibians are, after all, among the planet’s great survivors. The ancestors of today’s frogs crawled out of the water some 400 million years ago, and by 250 million years ago the earliest representatives of what would become the modern amphibian orders—one includes frogs and toads, the second newts and salamanders, and the third weird limbless creatures called caecilians—had evolved. This means that amphibians have been around not just longer than mammals, say, or birds; they have been around since before there were dinosaurs.
Most amphibians—the word comes from the Greek meaning “double life”—are still closely tied to the aquatic realm from which they emerged. (The ancient Egyptians thought that frogs were produced by the coupling of land and water during the annual flooding of the Nile.) Their eggs, which have no shells, must be kept moist in order to develop. There are many frogs that, like the Panamanian golden frog, lay their eggs in streams. There are also frogs that lay them in temporary pools, frogs that lay them underground, and frogs that lay them in nests that they construct out of foam. In addition to frogs that carry their eggs on their backs and in pouches, there are frogs that carry them wrapped like bandages around their legs. Until recently, when both of them went extinct, there were two species of frogs, known as gastric-brooding frogs, that carried their eggs in their stomachs and gave birth to little froglets through their mouths.
Amphibians emerged at a time when all the land on earth was part of a single expanse known as Pangaea. Since the breakup of Pangaea, they’ve adapted to conditions on every continent except Antarctica. Worldwide, just over seven thousand species have been identified, and while the greatest number are found in the tropical rainforests, there are occasional amphibians, like the sandhill frog of Australia, that can live in the desert, and also amphibians, like the wood frog, that can live above the Arctic Circle. Several common North American frogs, including spring peepers, are able to survive the winter frozen solid, like popsicles. Their extended evolutionary history means that even groups of amphibians that, from a human perspective, seem to be fairly similar may, genetically speaking, be as different from one another as, say, bats are from horses.
David Wake, one of the authors of the article that sent me to Panama, was among those who initially did not believe that amphibians were disappearing. This was back in the mid–nineteen-eighties. Wake’s students began returning from frog-collecting trips in the Sierra Nevada empty-handed. Wake remembered from his own student days, in the nineteen-sixties, that frogs in the Sierras had been difficult to avoid. “You’d be walking through meadows, and you’d inadvertently step on them,” he told me. “They were just everywhere.” Wake assumed that his students were going to the wrong spots, or that they just didn’t know how to look. Then a postdoc with several years of collecting experience told him that he couldn’t find any amphibians, either. “I said, ‘OK, I’ll go up with you, and we’ll go out to some proven places,’” Wake recalled. “And I took him out to this proven place, and we found like two toads.”
Part of what made the situation so mystifying was the geography; frogs seemed to be vanishing not only from populated and disturbed areas but also from relatively pristine places, like the Sierras and the mountains of Central America. In the late nineteen-eighties, an American herpetologist went to the Monteverde Cloud Forest Reserve in northern Costa Rica to study the reproductive habits of golden toads. She spent two field seasons looking; where once the toads had mated in writhing masses, a single male was sighted. (The golden toad, now classified as extinct, was actually a bright tangerine color. It was only very distantly related to the Panamanian golden frog, which, owing to a pair of glands located behind its eyes, is also technically a toad.) Around the same time, in central Costa Rica, biologists noticed that the populations of several endemic frog species had crashed. Rare and highly specialized species were vanishing and so, too, were much more familiar ones. In Ecuador, the Jambato toad, a frequent visitor to backyard gardens, disappeared in a matter of years. And in northeastern Australia the southern day frog, once one of the most common in the region, could no longer be found.
The first clue to the mysterious killer that was claiming frogs from Queensland to California came—perhaps ironically, perhaps not—from a zoo. The National Zoo, in Washington, D.C., had been successfully raising blue poison-dart frogs, which are native to Suriname, through many generations. Then, more or less from one day to the next, the zoo’s tank-bred frogs started dropping. A veterinary pathologist at the zoo took some samples from the dead frogs and ran them through an electron scanning microscope. He found a strange microorganism on the animals’ skin, which he eventually identified as a fungus belonging to a group known as chytrids.
Chytrid fungi are nearly ubiquitous; they can be found at the tops of trees and also deep underground. This particular species, though, had never been seen before; indeed, it was so unusual that an entire genus had to be created to accommodate it. It was named Batrachochytrium dendrobatidis—batrachos is Greek for “frog”—or Bd for short.
The veterinary pathologist sent samples from infected frogs at the National Zoo to a mycologist at the University of Maine. The mycologist grew cultures of the fungus and then sent some of them back to Washington. When healthy blue poison-dart frogs were exposed to the lab-raised Bd, they sickened. Within three weeks, they were dead. Subsequent research showed that Bd interferes with frogs’ ability to take up critical electrolytes through their skin. This causes them to suffer what is, in effect, a heart attack.
Copyright © 2014 by Elizabeth Kolbert